marvin.ai.text
Core LLM tools for working with text and structured data.
Model
¶
A Pydantic model that can be instantiated from a natural language string, in addition to keyword arguments.
from_text_async
async
classmethod
¶
Class method to create an instance of the model from a natural language string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The natural language string to convert into an instance of the model. |
required |
instructions |
str
|
Specific instructions for the conversion. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Model |
Model
|
An instance of the model. |
caption
¶
Generates a caption for an image using a language model synchronously.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Union[Image, List[Image]]
|
The image or images to caption. |
required |
instructions |
str
|
Instructions for the caption generation. |
None
|
model_kwargs |
dict
|
Additional arguments for the language model. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Generated caption. |
caption_async
async
¶
Generates a caption for a set of images using a language model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Union[Image, List[Image]]
|
The image or images to caption. |
required |
instructions |
str
|
Instructions for the caption generation. |
None
|
model_kwargs |
dict
|
Additional arguments for the language model. |
None
|
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
Generated caption. |
cast
¶
Converts the input data into the specified type.
This function uses a language model to convert the input data into a specified type. The conversion process can be guided by specific instructions. The function also supports additional arguments for the language model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
target |
type
|
The type to convert the data into. If none is provided
but instructions are provided, |
None
|
instructions |
str
|
Specific instructions for the conversion. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
T |
T
|
The converted data of the specified type. |
cast_async
async
¶
Converts the input data into the specified type.
This function uses a language model to convert the input data into a specified type. The conversion process can be guided by specific instructions. The function also supports additional arguments for the language model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
target |
type
|
The type to convert the data into. If none is provided
but instructions are provided, |
None
|
instructions |
str
|
Specific instructions for the conversion. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
T |
T
|
The converted data of the specified type. |
classifier
¶
Class decorator that modifies the behavior of an Enum class to classify a string.
This decorator modifies the call method of the Enum class to use the
marvin.classify
function instead of the default Enum behavior. This allows
the Enum class to classify a string based on its members.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls |
Enum
|
The Enum class to be decorated. |
None
|
instructions |
str
|
Instructions for the AI on how to perform the classification. |
None
|
model_kwargs |
dict
|
Additional keyword arguments to pass to the model. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Enum |
The decorated Enum class with modified call method. |
Raises:
Type | Description |
---|---|
AssertionError
|
If the decorated class is not a subclass of Enum. |
classify
¶
Classifies the provided data based on the provided labels.
This function uses a language model with a logit bias to classify the input data. The logit bias constrains the language model's response to a single token, making this function highly efficient for classification tasks. The function will always return one of the provided labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
labels |
Union[Enum, list[T], type]
|
The labels to classify the data into. |
required |
instructions |
str
|
Specific instructions for the classification. Defaults to None. |
None
|
return_index |
bool
|
Whether to return the index of the label instead of the label itself. |
False
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Type | Description |
---|---|
Union[T, int]
|
Union[T, int]: The label or index that the data was classified into. |
classify_async
async
¶
Classifies the provided data based on the provided labels.
This function uses a language model with a logit bias to classify the input data. The logit bias constrains the language model's response to a single token, making this function highly efficient for classification tasks. The function will always return one of the provided labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
labels |
Union[Enum, list[T], type]
|
The labels to classify the data into. |
required |
instructions |
str
|
Specific instructions for the classification. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Type | Description |
---|---|
Union[T, int]
|
Union[T, int]: The label or index that the data was classified into. |
extract
¶
Extracts entities of a specific type from the provided data.
This function uses a language model to identify and extract entities of the specified type from the input data. The extracted entities are returned as a list.
Note that either a target type or instructions must be provided (or both). If only instructions are provided, the target type is assumed to be a string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
target |
type
|
The type of entities to extract. |
None
|
instructions |
str
|
Specific instructions for the extraction. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
list[T]
|
A list of extracted entities of the specified type. |
extract_async
async
¶
Extracts entities of a specific type from the provided data.
This function uses a language model to identify and extract entities of the specified type from the input data. The extracted entities are returned as a list.
Note that either a target type or instructions must be provided (or both). If only instructions are provided, the target type is assumed to be a string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
FN_INPUT_TYPES
|
Union[str, Image, list[Union[str, Image]]]: the data to which the function will be applied. |
required |
target |
type
|
The type of entities to extract. |
None
|
instructions |
str
|
Specific instructions for the extraction. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
MarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
list[T]
|
A list of extracted entities of the specified type. |
fn
¶
Converts a Python function into an AI function using a decorator.
This decorator allows a Python function to be converted into an AI function. The AI function uses a language model to generate its output.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func |
Callable
|
The function to be converted. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Callable |
Callable
|
The converted AI function. |
generate
¶
Generates a list of 'n' items of the provided type or based on instructions.
Either a type or instructions must be provided. If instructions are provided without a type, the type is assumed to be a string. The function generates at least 'n' items.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target |
type
|
The type of items to generate. Defaults to None. |
None
|
instructions |
str
|
Instructions for the generation. Defaults to None. |
None
|
n |
int
|
The number of items to generate. Defaults to 1. |
1
|
use_cache |
bool
|
If True, the function will cache the last 100 responses for each (target, instructions, and temperature) and use those to avoid repetition on subsequent calls. Defaults to True. |
True
|
temperature |
float
|
The temperature for the generation. Defaults to 1. |
1
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
list[T]
|
A list of generated items. |
generate_async
async
¶
Generates a list of 'n' items of the provided type or based on instructions.
Either a type or instructions must be provided. If instructions are provided without a type, the type is assumed to be a string. The function generates at least 'n' items.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target |
type
|
The type of items to generate. Defaults to None. |
None
|
instructions |
str
|
Instructions for the generation. Defaults to None. |
None
|
n |
int
|
The number of items to generate. Defaults to 1. |
1
|
use_cache |
bool
|
If True, the function will cache the last 100 responses for each (target, instructions, and temperature) and use those to avoid repetition on subsequent calls. Defaults to True. |
True
|
temperature |
float
|
The temperature for the generation. Defaults to 1. |
1
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
client |
AsyncMarvinClient
|
The client to use for the AI function. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
list[T]
|
A list of generated items. |
generate_llm_response
async
¶
Generates a language model response based on a provided prompt template.
This function uses a language model to generate a response based on a provided prompt template. The function supports additional arguments for the prompt and the language model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_template |
str
|
The template for the prompt. |
required |
prompt_kwargs |
dict
|
Additional keyword arguments for the prompt. Defaults to None. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
ChatResponse |
ChatResponse
|
The generated response from the language model. |
model
¶
Class decorator for instantiating a Pydantic model from a string.
This decorator allows a Pydantic model to be instantiated from a string. It's equivalent to subclassing the Model class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
type_ |
Union[Type[M], None]
|
The type of the Pydantic model. Defaults to None. |
None
|
instructions |
str
|
Specific instructions for the conversion. |
None
|
model_kwargs |
dict
|
Additional keyword arguments for the language model. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Union[Type[M], Callable[[Type[M]], Type[M]]]
|
Union[Type[M], Callable[[Type[M]], Type[M]]]: The decorated Pydantic model. |
prepare_data
¶
Prepares the input data for the AI function.
This function prepares the input data for the AI function by converting it into a list of strings. If the input data is a list of strings or images, the function converts the images into strings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Union[str, Image, list[Union[str, Image]]]
|
The input data to be prepared. |
required |
Returns:
Type | Description |
---|---|
list[str]
|
list[str]: The prepared input data. |